Histone demethylase KDM2B inhibits the chondrogenic differentiation potentials of stem cells from apical papilla.

نویسندگان

  • Jing-Jing Wang
  • Rui Dong
  • Li-Ping Wang
  • Jin-Song Wang
  • Juan Du
  • Song-Lin Wang
  • Zhao-Chen Shan
  • Zhi-Peng Fan
چکیده

Mesenchymal stem cells (MSCs) are a reliable resource for tissue regeneration, but the molecular mechanism underlying directed differentiation remains unclear; this has restricted potential MSC applications. Histone methylation, controlled by histone methyltransferases and demethylases, may play a key role in MSCs differentiation. Previous studies determined that KDM2B can regulate the cell proliferation and osteo/dentinogenic differentiation of MSCs. It is not known whether KDM2B is involved in the other cell lineages differentiation of MSCs. Here we used the stem cells from apical papilla (SCAPs) to study the role of KDM2B on the chondrogenic differentiation potentials in MSCs. In this study, Gain- and loss-of-function assays were applied to investigate the role of KDM2B on the chondrogenic differentiation. Alcian Blue Staining and Quantitative Analysis were used to investigate the synthesis of proteoglycans by chondrocytes. Real-time RT-PCR was used to detect the expressions of chondrogenesis related genes. The Alcian Blue staining and Quantitative Analysis results revealed that overexpression of KDM2B decreased the proteoglycans production, and real-time RT-PCR results showed that the expressions of the chondrogenic differentiation markers, COL1, COL2 and SOX9 were inhibited by overexpression of KDM2B in SCAPs. On the contrary, depletion of KDM2B increased the proteoglycans production, and inhibited the expressions of COL1, COL2 and SOX9. In conclusion, our results indicated that KDM2B is a negative regulator of chondrogenic differentiation in SCAPs and suggest that inhibition of KDM2B might improve MSC mediated cartilage regeneration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Histone demethylase KDM2B regulates lineage commitment in normal and malignant hematopoiesis.

The development of the hematopoietic system is a dynamic process that is controlled by the interplay between transcriptional and epigenetic networks to determine cellular identity. These networks are critical for lineage specification and are frequently dysregulated in leukemias. Here, we identified histone demethylase KDM2B as a critical regulator of definitive hematopoiesis and lineage commit...

متن کامل

Targeting glioma stem‐like cell survival and chemoresistance through inhibition of lysine‐specific histone demethylase KDM2B

Glioblastoma (GBM) ranks among the most lethal cancers, with current therapies offering only palliation. Inter- and intrapatient heterogeneity is a hallmark of GBM, with epigenetically distinct cancer stem-like cells (CSCs) at the apex. Targeting GSCs remains a challenging task because of their unique biology, resemblance to normal neural stem/progenitor cells, and resistance to standard cytoto...

متن کامل

Histone demethylase KDM2B upregulates histone methyltransferase EZH2 expression and contributes to the progression of ovarian cancer in vitro and in vivo

Aberrant histone methylation contributes to the progression and development of many tumors. Histone methylation is a dynamic process regulated by both histone demethylase and histone methyltransferase, which ultimately alters the levels of gene transcription. However, the relationship between histone demethylase and histone methyltransferase, as well as their regulatory mechanisms in ovarian ca...

متن کامل

MYELOID NEOPLASIA KDM2b/JHDM1b, an H3K36me2-specific demethylase, is required for initiation and maintenance of acute myeloid leukemia

The histone H3 lysine 36 dimethyl– specific demethylase KDM2b/JHDM1b, which is highly expressed in various human leukemias, was previously found to be important in regulating cell proliferation and cellular senescence. However, its functions in leukemia development and maintenance are unclear. Here, we demonstrate that ectopic expression of Kdm2b/Jhdm1b is sufficient to transform hematopoietic ...

متن کامل

Induction of Chondrogenic Differentiation of Human Adipose-Derived Stem Cells with TGF-β3 in Pellet Culture System

Objective Adult stem cells which are derived from different tissues, with their unique abilities to self-renew and differentiate into various phenotypes have the potential for cell therapy and tissue engineering. Human adipose tissue is an appropriate source of mesenchymal stem cells with wide differentiation potential for tissue engineering research. In this study isolated stem cells from hum...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • International journal of clinical and experimental medicine

دوره 8 2  شماره 

صفحات  -

تاریخ انتشار 2015